Comparison between UV and VUV photolysis for the pre- and post-treatment of coking wastewater.
نویسندگان
چکیده
In this study, ultraviolet (UV) and vacuum ultraviolet (VUV) photolysis were investigated for the pre-treatment and post-treatment of coking wastewater. First, 6-fold diluted raw coking wastewater was irradiated by UV and VUV. It was found that 15.9%-35.4% total organic carbon (TOC) was removed after 24 hr irradiation. The irradiated effluent could be degraded by the acclimated activated sludge. Even though the VUV photolysis removed more chemical oxygen demand (COD) than UV, the UV-irradiated effluent demonstrated better biodegradability. After 4 hr UV irradiation, the biological oxygen demand BOD5/COD ratio of irradiated coking wastewater increased from 0.163 to 0.224, and its toxicity decreased to the greatest extent. Second, the biologically treated coking wastewater was irradiated by UV and VUV. Both of them were able to remove 37%-47% TOC within 8 hr irradiation. Compared to UV, VUV photolysis could significantly improve the transparency of the bio-treated effluent. VUV also reduced 7% more ammonia nitrogen (NH4+-N), 17% more nitrite nitrogen (NO2--N), and 18% more total nitrogen (TN) than UV, producing 35% less nitrite nitrogen (NO3--N) as a result. In conclusion, UV irradiation was better in improving the biodegradability of coking wastewater, while VUV was more effective at photolyzing the residual organic compounds and inorganic N-species in the bio-treated effluent.
منابع مشابه
CONTENTS 165 Individual particle analysis of aerosols collected at Lhasa City in the Tibetan Plateau
Article history: Received 21 October 2014 Revised 28 October 2014 Accepted 29 October 2014 Available online 23 January 2015 In this study, ultraviolet (UV) and vacuum ultraviolet (VUV) photolysis were investigated for the pre-treatment and post-treatment of coking wastewater. First, 6-fold diluted raw coking wastewater was irradiated by UV and VUV. It was found that 15.9%–35.4% total organic ca...
متن کاملVUV/UV light inducing accelerated phenol degradation with a low electric input.
This study presents the first evidence for the accelerated degradation of phenol by Fenton's reagent in a mini-fluidic VUV/UV photoreaction system (MVPS). A low-pressure mercury lamp used in the MVPS led to a complete degradation of phenol within 4-6 min. The HO˙ and HO2˙ originating from both Fenton's reagent and VUV photolysis of water were identified with suitable radical scavengers. The eff...
متن کاملRecent Development of VUV-Based Processes for Air Pollutant Degradation
As air pollution poses a great challenge around the globe, it is essential to fashion out a way of efficiently degrading the air pollutants. Vacuum Ultraviolet (VUV)-based processes are an emerging and promising technology for environmental remediation such as air cleaning, wastewater treatment, and air/water disinfection. When VUV irradiation, photolysis, photocatalysis, and ozone-assisted oxi...
متن کاملکاربرد فرایند فتوکاتالیستی TiO2/UV-C در حذف رنگ راکتیو قرمز 198 از فاضلاب سنتتیک نساجی
Background: Dyes have complicated structure, are usually toxic and resistant to biological treatment which entere into environment by industrial waste streams. The aim of this study was the removal of reactive red 198 dye (RR 198) by photolysis (UV) and photocatalytical (TiO2/UVC) processes. This study was conducted to investigate the effects of dye concentration, pH, TiO2 dose, and contact tim...
متن کاملVUV and mid-UV photoabsorption cross sections of thin films of guanine and uracil: application on their photochemistry in the solar system.
We present a photostability study of two nucleobases, guanine and uracil. For the first time, the photoabsorption cross-section spectra of these molecules in the solid phase were measured in the VUV and mid-UV domain (115≤λ≤300 nm). They show a quite similar absorption level throughout this wavelength range, highlighting the importance of considering the whole VUV and UV domain during photolysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental sciences
دوره 29 شماره
صفحات -
تاریخ انتشار 2015